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Summary  

The Airy stress function, coupled with the theory of functions of a complex variable, is used to investigate the 
bending of plates in plane strain. In the limiting case of a thin plate, the theory reproduces the well-known result 
of elasticity theory known as Love's Equation [1] and systematic corrections in powers of the plate thickness are 
easily derived. 

1. Introduction 

The  Airy stress function, coupled with the theory of analytic funct ions of  a "complex 
variable,  is par t icular ly useful for solving p lane  boundary-va lue  p rob lems  in elasticity 
theory, because surface deformat ions  can be directly related to appl ied surface forces by  
means  of integral t ransforms [2]. The  purpose  of this pape r  is to apply  this me thod  of 
analysis to the case of  a b e a m  (or plate) under  plane strain. For  completeness ,  we give the 
equat ions of  elasticity and of the theory of analytic functions,  that  are necessary to derive 
all of  our results. 

Consider  the two-dimensional  d isplacement  field 

d =  ( d a ( x ,  y), dz(x, y), 0). (1.1) 

The  stress and strain tensors can be writ ten as 

lfOa, Odj  
(1.2) 

% = x a , s ( u . )  + 2~u~ s. (1.3) 

The  equil ibrium equations are 

~aij 
Oxj 0 (1.4) 
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which are automatically satisfied by the use of the Airy stress function A(x, y), 

O2A(x, y) O2A(x, y) a2A(x, y) 
Oxx = aY 2 , Oxy ax Oy , Oyy ~ Ox  2 

from which (1.3) yields 

(1.5) 

~x 

v,x 

Uxy 
( X + 2 ~ )  1 O2A(x, y) 1 02A(x, y) 

4~(X + ~ )  V2A(x' y ) -  2~ ax 2 ' - 2 ~  Ox Oy 

_ 1 O2A(x, y) (X+2~)  v2A(x,  y) 1 O2A(x, y) 
2~ Oxay ' 4 ~ ( ~ + ~ )  2~ 3y2 

(1.6) 

The compatability equations, relating (1.2) and (1.6), then give the biharmonic equation 

v4A(x,  y) = 0. (1.7) 

Taking the complex form of x7 2, 

V 2 = 4 2  
az ~z*' 

solutions of Equation (1.7) can be written as 

A(x, y)=Re[fl(z)+(z2z--) f2(z)]  (1.8) 

where 

f~(z)=U~(x,  y)+iV,,(x, y), n = l , 2 ,  (1.9) 

is an analytic function of z = x + iy. From (1.8), 

A(x, y)= Ul(x, y)+xU2(x, y). (1.10) 

The displacements up to an irrelevant rotation can be obtained by integrating (1.6) to give 

(2.+2p.) U2(x ' y )_  1 OA(x, y) 
dl(X' Y) = 2/*(X +/*) 21. ilx ' 

(X + 2/*) 1 aA(x, y) (1.11) d2(x' Y ) -  2/x(X +/~) V2(x' y) 2# ay 

The equations of analytic function theory that we need are the Cauchy-Riemann equa- 
tions, 

~U aV ~U ~V 
~x ay '  ~y ~x ' (1.12) 



and  Cauchy's integral representation, 

1 - f ( z ' )  dz' 
/ ( z ) = g ~  7 ~ _ z  

where z and z' are both on the closed contour of integration, c. 
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(1.13) 

2. Elasticity equations 

Here, we apply the elasticity theory, discussed in the introduction, to the case of an 
infinite plate of thickness l. Consider a section of the infinite plate under plane strain, to 
be represented by a strip in the complex plane, as shown in Fig. 1. Surface I is free and 
surface II is subjected to pressure and shear distributions P(y) and S(y), respectively. 
Such a situation is encountered, for' example, when a plate is rigidly attached to a 
substrate, which is itself subject to plane deformation (see for example [3]). Zero external 
forces on I can, through equations (1.5), be simulated by assuming that both A and its 
normal derivative are zero on this surface, i.e., 

A ( - ½ l ,  y ) : 0 ,  

~A y)=0 
(2.1) 

b 

. . .< . . . . . . . . .  ( .  

~S(y) 

SURFACE I U/ !  SURFACE 
I 

It 

Figure 1. A diagrammatic representation of a plate of infinite length and width I, as an infinite strip of the 
complex plane, showing the closed counter used in the integration along the surface boundary. 
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The external stress on surface II implies 

A(½1, y)=fY_ooP(y')(y-y') dy' = A ( y ) ,  

Ax(½l, y ) =  -]Y_ S(y') dy' = A x ( y ) .  (2.2) 
oo 

In order to simplify the notation, it is convenient to define 

U + ( y )  = U,,(½I, y), U , - ( y ) =  U,,(-½I, y), (2.3) 

U;(y) = U+(y) + U~-(y), U P ( y )  = U+(y) - U,-(y) ,  

and similar results for the functions In, where the subscript n = 1, 2. Equations (1.10), 
(1.12), (2.1) and (2.2) give 

A(+½1, y) = U,+(y) +½1U2+(y) 

and 

Ax(+½1, y ) =  av1+(Y) + i ,  oV2+(y) 
o--7- +u2±(Y) 

Or, in terms of sums and differences, we obtain our principal elasticity equations: 

U~(y) + ½1u2D(y) = A(y), 

UaD(y) + ½IU~(y)= A(y), 

OV:(y) Ov2Z~(y) 
0-----7-+ U~(y)+½1 O-=====y-- 

oVg(y) 
Oy 

Ax(Y), 

t- U~(y) + ½lOV~yY) = Ax(y). 

(2.4) 

3. Analyticity equations 

Cauchy's integral representation along the boundary shown in Fig. 1, with z = - ½1 + iy, 
gives 

1 oo U,-(y')+iV~(y') 
U,- ( y )  + iV,- ( y )  = - ~-~l f _  ~ y ' - y  dy' 

1 f,~ U+(Y')+iV+(Y') dy', (3.1) 
+ 7 -7-- 
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and a similar expression for z = ½l + iy. By equating the real and imaginary parts and 
rearranging, one obtains the following set of equations: 

u s = L v f  + ~ v f  + ~ u s ,  u f  = L v  s - ~ v s  - ~ u f ,  

Vs= _LuD_)f.tuD + ~vS ' vD= _Lus + ~us_~vD,  (3.2) 

where L, 3~/and N are integral operators such that 

~LU= f~_ L(y'-y)U(y') dy', 
O0 

for example, with 

L= 1 1 M=--I (y ' -y )  and N = - l  1 
7r y ' - y '  Ir ( y , _ y ) 2  + l 2 ~r ( y , _ y ) 2  + l 2. 

Since these are convolutions, equations (3.2) become simple algebraic equations when 
expressed in terms of Fourier transforms, for example, 

DS(~) = L (k) f~.°(k) + ~ (~ )  P.~(k) + ~(~)OS(~), 

where 

and 

etc., (3.3) 

L ( k ) = l  ['~ e x p ( - i k ( y ' - y ) ) d y = _ i , ( k ) ,  
rr J _  ~ y'  - y  

)lT/(k)= ; f ] ~ l  ~ (y ' -y )  exp(;ik(y'-y))(y,_y +l z d y = - i , ( k )  e x p ( - I k l l ) ,  

N(k)  = / [ ~  exp ( - ik (y_ ' . -y ) )  dy  = exp ( -  I k l l )  
,trJ_~ (y,_y)2+12 

(3.4) 

(3.5) 

(3.6) 

- 1 ,  k<O,  
~ ( k ) =  +1,  k > 0 .  

Out of the four transformation equations obtained from analyticity, only 2 are indepen- 
dent; for example, 

US(k) = - i ~ ( k ) V f f ( k ) ( 1  + e x p ( -  Ik I1)) 
(1 exp ( -  Ik l l ) )  ' 

gr~ = - i , ( k ) ~ ' S ( k )  (1 - exp ( -  I k I/)) 
(1+  e x p ( - I k l / ) )  " 

Thus, writing out these expressions explicitly for both fl and f2 (i.e. n = 1, 2) and 
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transforming the 4 elasticity equations, one obtains in total eight linear algebraic equa- 
tions in eight unknowns: 

UlS(k) = - i , (k) lT"D(k)  (~  

/_)2~(k) = _ic(k)~,20(k ) (1 
(1 
(1 

Uff(k)  = - i c ( k ) ~ ' ~ ( k )  
(1 

O2D(k) = _ic(k)~2S(k)  (1 
(1 

CS~( k ) + ½1re~( k ) = d ( k ) ,  

C;l~( k ) + ½tCS;( k ) = d (k ) ,  

+ e x p ( -  I k I l))  

exp( - I k I l ) )  ' 

+ exp( - I kl 1)) 

- exp( - I k l l ) )  ' 

- exp( - [k I1)) 

+ e x p ( -  I k l l ) ) '  

- e x p ( -  I k I / ) )  
+ e x p (  - I k I / ) )  ' 

- iklT'~(k) + U2~(k) - ½iklV~(k) = .,~x(k), 

- ik fZf l (k )  + u2D(k) -- ½iklV~(k) = Ax(k) ,  

Solving these equations, one can show for example, that 

where 

and 

(3.7) 

(3.8) 

[k [ 313(1 + e x p ( _ l  i k j))2 (3.9) 

O ( k ) =  1 2 1 1 - e x p ( - 2 1 l k l ) - 2 1 1 k  [ e x p ( - l l k [ ) ]  

12k2(1 - exp( - 21 [ k [) 

P ( k )  = 611 - e x p ( - 2 l l k l ) - 2 1 l k l e x p ( - l l k [ ) ) ]  " 
(3.10) 

These equations and those that can be similarly derived for all other surface displace- 
ments, are a complete solution to this elasticity problem for arbitrary plate thickness I and 
arbitrary external stress. Expressed in co-ordinate space, they give surface displacements 
directly as integral transforms of the applied surface stress. 

For small l, 

O ( k )  [ I+½12k2],  P ( k ) = [ l + ~ 1 2 k 2 ] ,  (3.11) 
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and equations (1.11), (3.8) and (3.11) give for the mean-surface displacements 

d2dl (X + 2/~)[ 3 A ( y ) 3 A x ( y ) ~ / p ( y ) ]  (3X-  4 / ~ ) d S ( y ) ( 3 . 1 2 )  
dy  2 /.t(X +//,) l 3 2l 2 40~ ()k +/~) dy  

where the moments A ( y )  and A x ( y  ) are related to the applied stresses P ( y )  and S ( y )  by 
equations (2.2). For small l, the first term on the right-hand side of equation (3.12) 
dominates and is equivalent to Love's result for the bending of thin plates [1]. 

4. Conclusions 

This work has shown the power and utility of the Airy stress function, coupled with the 
theory of functions of a complex variable, in a two-dimensional formulation of beam 
theory. In this formulation, appropriate displacements can be isolated and expressed 
directly in terms of integral transforms on the applied stresses. The information concern- 
ing the displacements of the system is therefore retained until the end of the calculation in 
the form of 8 algebraic equations. This is particularly advantageous over the methods 
normally employed in this type of problem which necessitate successive approximations 
being made throughout the calculation. 

In the limiting case of a thin plate, the theory reproduces the well-known result of 
elasticity theory known as Love's Equation, for which systematic corrections in powers of 
the plate thickness can be easily obtained. 
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